

EUROPEAN COMMISSION 5th EURATOM FRAMEWORK PROGRAMME 1998-2002 KEY ACTION : NUCLEAR FISSION

European Project for the development of HTR Technology -Materials for the HTR

CONTRACT N°

FIKI-CT-2001-00135

HTR-M1 Report on results of heavily carburised U720 Turbine Disk material

S Ripplinger H Rantala P Hahner

JRC-IE

Netherlands

Dissemination level: CO Document Number: HTR-M1-05/11-D-1.2.34

Project

HTR-M1

Project number Contract number Customer Subject Test type Unit Operator Start Date Authors

heavily carburized U720 disk material strain-controlled LCF HFR-SFM S. Ripplinger November 2005 S. Ripplinger, H. Rantala & P. Hähner

HTR-M1: Low-Cycle Fatigue Tests

The present report summarizes the results of the Low-Cycle Fatigue (LCF) tests performed on the turbine disk material Udimet 720 which has been pretreated to achieve a heavily carburized state, in order to assess the effect of a specific HTR environment. The results are compared to the LCF performance in the as-received state.

Material:

The material Udimet 720 stems from a forged pancake (certificate no. HY540203), which CEA had received from Aubert&Duval. One half of the pancake disk (diameter 320mm, height 80mm) was sent to JRC-IE in the as received state (cast& wrought, forged and fully heat treated for service), henceforth referred to as State I, for specimen machining and further carburization treatment. This treatment was carried out at JRC-IE on six fully machined LCF specimens by exposing them for 1000h at 950°C to a 1.6 bar absolute Argon+2%CH4 atmosphere. This gives rise to a heavily carburized material state, henceforth called State III. Two specimens were left in the as-received State I for reference tests and temperature profile calibration.

The mechanical tests described below belong to a comprehensive test campaign performed at CEA and JRC, where four material states of U720 forged are compared, namely

fully heat-treated for service
additional ageing heat treatment in air: 1000h at 950°C
entirely decarburized in Ar + 500µbar H2 + 50µbar H2O
heavily carburized in 1.6 bar Argon+2%CH4: 1000h at 950°C

Due to the fact that the carburization treatment had led to pitting corrosion visible at low magnification on the specimen surface, it was decided to re-polish three specimens according to ASTM E606-92, while leaving the other three specimens in the as exposed state.

Experimental:

All LCF tests were conducted on a digitally controlled electro-mechanical test rig (Instron 8862) at a temperature of 650°C. The heating was achieved by induction (Cheltenham). Within the gauge length of 8mm, temperature was maintained within +/- 2°C by controlling the temperature by a Type N thermocouple, which was spot-welded 6mm below the specimen centre (i.e. 2mm outside the gauge length), but still within the parallel length. For the purpose of the present test series, the extensometer had been re-calibrated to Class1, and the load train misalignment had been verified to be less than 3% bending percentage by the use of a strain-gauged alignment specimen.

The actual specimen diameters and actual gauge lengths of the Sandner clip-on extensioneters were determined individually to 10 μ m accuracy (3 repeat measurements). Room temperature Young's moduli were measured on two opposite specimen sides to check the appropriate specimen mounting and the extensionetry. Young's modulus and yield stress ($R_{p0.2\%}$) at 650°C were determined from the first cycle of the LCF test.

All LCF tests were performed in total strain control, using triangular strain waveforms, a strain ratio of $R_{\varepsilon} = 0.05$ (always tension), and different maximum strain values of 0.6%, 0.7%, 0.8%, and 1.0%. The cycle period varied as to maintain a constant strain rate of +/- 0.1%/s for all tests. The tests were conducted to 15% drop of maximum load or failure or $N \sim 45,000$ (termination), whatever occurred first.

Specimen id.	state	T (°C)	$de/dt (10^{-3}/s)$	t _{cvcle} (s)	e _{max} (%)	$\mathbf{e}_{\min}(\%)$		
U1	Ш	650	1	19.0	1.0	0.05		
U2	Ш	650	1	13.3	0.7	0.035		
U3 (polished)	Ш	650	1	15.2	0.8	0.04		
U4 (dummy)	Ι	Tempera	Temperature profile calibration					
U5	Ш	650	1	11.4	0.6	0.03		
U6 (polished)	Ш	650	1	19.0	1.0	0.05		
U7 (polished)	Ш	650	1	13.3	0.7	0.035		
U8	Ι	650	1	19.0	1.0	0.05		

Test matrix

Table 1: Test parameters

Results

Table 2 summarizes the main results. One specimen was lost due to a power trip leading to specimen failure by thermal contraction. The other tests are considered valid with fatigue cracking occurring within the parallel length, noting, however, that one specimen (U8) failed close to, but not immediately at, the thermocouple spot-weld, where the temperature was about 4° C lower. All other specimens failed within the gauge length, where the temperature deviation was less than 3° C.

It is obvious from Table 2 and Figures 1 and 2 that the carburization treatment has detrimental effects on the yield strength ($\sigma_y = 910$ MPa for State I, whereas $\sigma_y \cong 650$ MPa for State III), as well as on the LCF performance, in particular, as regards the regime of high strain ranges and low numbers of cycles to failure. For a given strain range of 0.95% (i.e. max. strain 1%), the State I material bears significantly larger stress ranges while LCF lives are still longer. This observation holds irrespective of the surface quality (corrosion pitted, Fig. 2, or re-polished, Fig. 1).

	L cone	CF dition	1 st c	cycle		Test end			Nf/2		
Spe c. id	e _{max} (%)	e _{min} (%)	E (650°C) (Gpa)	Rp0.2% (650°C) (Mpa)	N _f	Terminated by	s _{max} (Mpa)	s _{min} (Mpa)	De _{tot} (%)	De _{pl} (%)	De _{el} (%)
U1	1.0	0.05	174.5	648	647	brittle fracture inside GL	726.4	-675.7	0.950	0.157	0.804
U2	0.7	0.035	169.3	652	3353	brittle fracture inside GL	696.3	-399.1	0.665	0.024	0.647
U3	0.8	0.04	Specimen	Specimen went out of control due to general power failure in North Holland							
U5	0.6	0.03	169.5	640	44694	Stopped by operator	638.9	-289.8	0.570	0.024	0.549
U6	1.0	0.05	170.1	650	618	15% load drop crack inside GL	731.6	-651.9	0.953	0.147	0.813
U7	0.7	0.035	168.1	628	45549	Stopped by operator	673.1	-410.9	0.664	0.029	0.64
U8	1.0	0.05	169.1	910	3392	15% load drop crack outside GL	936.3	568.3	0.953	0.068	0.890

Table 2: Overview of test results

Fig. 1: Cyclic stress maxima and minima of polished State III ($\varepsilon_{max} = 0.7\%$ and 1.0%) as compared to reference State I ($\varepsilon_{max} = 1.0\%$)

Max. and min stress versus Cycle numbers of unpolished State III specimens and reference State I specimen

Fig. 2: Cyclic stress maxima and minima of unpolished State III ($\varepsilon_{max} = 0.7\%$ and 1.0%) as compared to reference State I ($\varepsilon_{max} = 1.0\%$)

For a more comprehensive picture, previous LCF results obtained for State I at CEA (ref: HTR-M Deliverable 2.10, Rapport Technique DTEN/DL/2005/013 by R. Couturier et al.) can be taken into account, cf Figures 3 and 4. To justify the comparability of results, one State I specimen was LCF tested using $\varepsilon_{max} = 1\%$. In terms of fatigue life and cyclic response, the result fits convincingly into the CEA series of results.

Using the CEA reference, it is concluded that the numbers of cycles to failure are less by a factor of about 5 for State III as compared to State I, if maximum strains $\varepsilon_{max} > 0.7\%$ are considered. For these conditions re-polishing of the carburized testpieces has little effect, as fatigue lives tend to be bulk controlled. However, surface finish does matter for the lowest max. strain values, since fatigue crack initiation starts from surface defects, such as corrosion pits.

Fig. 3: Maximum total strain versus number of cycles to failure, incl. CEA results for reference State I

(HTR-M Deliverable 2.10, Rapport Technique DTEN/DL/2005/013 by R. Couturier et al.)

If the plastic strain ranges at midlife $(N_{f}/2)$ are plotted vs. $N_{f_{5}}$ one notes that the State III material can accommodate much larger plastic strains and still survive for more than 45000 cycles, as compared to State I. This holds for the lowest max. strain values and, in particular, the polished State III.

Conclusions

- Carburization results in 30% drop of yield strength.
- Carburization results in up to five times shorter LCF lives albeit stress ranges are lower.

Further microstructural analysis is needed to

- assess the fracture mode (optical microscopy),
- determine the penetration depth of carburization treatment (SEM),
- clarify the role of persistent slip bands in fatigue crack initiation and failure (TEM).

Morover, additional LCF tests on the decarburized condition are desirable to arrive at a comprehensive understanding.

Fig. 4: Plastic strain range versus number of cycles to failure, incl. CEA results for reference State I

(HTR-M Deliverable 2.10, Rapport Technique DTEN/DL/2005/013 by R. Couturier et al.)

Specimen Information

material	=	Udimet 720			
parallel length	=	18	mm		
position TC	=	- 6	mm		
area A	=	~28.2	27 mm ²		
GL diameter	=	~6	mm		

Common Test data

Test Type	LCF in total strain control mode
Project	HTR-M1
Contract number	
Project number	
Project year	2005
Description	
Unit	HFR-SFM
Action Type	Competitive
Specimens produced by	Material rec'd from CEA, specimens machined at IE
Project leader	N. Taylor / P Hähner (task leader)
Operator	S. Ripplinger
Tel:	+31-224-565432
Fax:	
E-mail	stefan.ripplinger@jrc.nl
Test Rig	Instron III
Used heating system	Cheltenham induction 6kW, 120 kHz
Cooling (water)	Extra water cooling plates top and bottom specimen
Cooling (Air)	no
Mounting of specimen	With M16 standard grip plates

Used TMF control and data-logging program

Data control Instron II	MAX
Data logging Instron II	MAX

Calibration Results

Cal. Extensometer	50 m/V calibrated 21/10/2005; class 1
Alignment of load train	$\mathbf{b}_{\text{maxs}} = < 3\%; 03/06/2005$

Test matrix

Specimen id.	state	T (°C)	$de/dt (10^{-3}/s)$	t _{cvcle} (s)	$\mathbf{e}_{\max}(\%)$	e _{min} (%)
U1	Ш	650	1	19.0	1.0	0.05
U2	Ш	650	1	13.3	0.7	0.035
U3 (polished)	Ш	650	1	15.2	0.8	0.04
U4 (dummy)	Ι	Tempera	ture profile calib	ration		
U5	Ш	650	1	11.4	0.6	0.03
U6 (polished)	Ш	650	1	19.0	1.0	0.05
U7 (polished)	Ш	650	1	13.3	0.7	0.035
U8	Ι	650	1	19.0	1.0	0.05

Test-end criteria:

• After 15% drop of maximum load or N = 50.000

Calibration of temperature profile (Specimen U4):

Control TC middle of gauge length	TC +4 mm	TC –4 mm	TC –6 mm
651 °C	647°C	647°C	648°C

Control TC TC -6 mm	Control TC TC -6 mm TC + 4 mm		TC –4 mm
648°C		651°C	
647°C		649-650°C	

Summary of LCF-test results

	LCF condition		1 st cycle		Test end				Nf/2		
Spe c. id	e _{max} (%)	e _{min} (%)	E (650°C) (Gpa)	R0.2 % (Mpa)	N _f	Terminated by	s _{max} (Mpa)	s _{min} (Mpa)	De tot (%)	De _{pl} (%)	De _{el} (%)
U1	1.0	0.05	174.5	648	647	brittle fracture	726.4	-675.7	0.950	0.157	0.804
U2	0.7	0.035	169.3	652	3353	brittle fracture	696.3	-399.1	0.665	0.024	0.647
U3	0.8	0.04	Specimen failed due to general power failure in North Holland								
U5	0.6	0.03	169.5	640	44694	by operator	638.9	-289.8	0.570	0.024	0.549
U6	1.0	0.05	170.1	650	618	15% load drop	731.6	-651.9	0.953	0.147	0.813
U7	0.7	0.035	168.1	628	45549	by operator	673.1	-410.9	0.664	0.029	0.64
U8	1.0	0.05	169.1	910	3392	15% load drop	936.3	568.3	0.953	0.068	0.890

LCF-test "U1" :

Test conditions:	
Material:	U 720, state III, unpolished
Temperature:	650°C
R _e :	0.05
t _{cvcle} :	19.0 s
e _{max} (%):	1.0
$e_{\min}(\%)$:	0.05
Gauge length (measured):	7481 μm
E-modulus at 650°C measured	at first cycle 174.5 GPa
Diameter of CSA:	6.008 mm
CSA:	28.350 mm²
Comments:	none

LCF-test "U2" :

Comments:

Test conditions:	
Material:	U 720, state III, unpolished
Temperature:	650°C
R _e :	0.05
t _{cvcle} :	13.3 s
e _{max} (%):	0.7
e _{min} (%):	0.035
Gauge length (measured):	7425 μm
E-modulus at 650°C measured	at first cycle 169.3 GPa
Diameter of CSA:	6.017 mm
CSA:	28, 435 mm ²

28. 435 none

LCF-test "U5" :

Test conditions:	
Material:	U 720, state III, unpolished
Temperature:	650°C
R _e :	0.05
t _{cycle} :	13.3 s
e _{max} (%):	0.7
$e_{\min}(\%)$:	0.035
Gauge length (measured):	7503 µm
E-modulus at 650°C measured	at first cycle 169.5 GPa
Diameter of CSA:	6.026 mm
CSA:	28. 52 mm ²
Comments:	none

LCF-test "U6" :

Test conditions: Material: U 720, state III, polished **Temperature:** 650°C 0.05 R_e: 19.0 s t_{cycle}: **e**_{max} (%): 1.0 **e**_{min} (%): 0.05 Gauge length (measured): 7450 µm E-modulus at 650°C measured at first cycle 170.125 GPa **Diameter of CSA:** 5.976 mm 28.049 mm² CSA: **Comments:** none

LCF-test "U7" :

Test conditions:	
Material:	U 720, state III, polished
Temperature:	650°C
R _e :	0.05
t _{cycle} :	13.3 s
e _{max} (%):	0.7
$e_{\min}(\%)$:	0.035
Gauge length (measured):	7579 µm
E-modulus at 650°C measured at f	first cycle 168.1 GPa
Diameter of CSA:	5.948 mm
CSA:	27.786 mm^2
Comments:	Test stopped after 45549 cycles by operator.

LCF-test "U8" :

Test conditions:	
Material:	U 720, state I, unpolished
Temperature:	650°C
R _e :	0.05
t _{cycle} :	19.0 s
e _{max} (%):	1.0
$e_{\min}(\%)$:	0.05
Gauge length (measured):	7475 μm
E-modulus at 650°C measured	at first cycle 169.1 GPa
Diameter of CSA:	6.012 mm
CSA:	28. 388 mm²
Comments:	none

