Materials and Coatings used in the UK AGR and Dragon reactors

Ву

B. Riley

C6940/TR/0004 Issue 01 May 2003

Commercial-in-Confidence

DOCUMENT ISSUE RECORD

(engineering documents)

Document Title : Materials and Coatings used in the UK AGR and Dragon reactors

Project Reference: 69401

Purpose of Issue : Interim Draft

Security Class : Commercial-in-Confidence

Issue	Description of Amendment	Originator/ Author	Checker	Approver	Date
		B. Riley	D. Buckthorpe	T. Lennox	

Total number of pages:Intro:(i)-(v)Text1-9TablesT1-T20FiguresF1-F2Appendices

Previous issues of this document shall be destroyed or marked SUPERSEDED

© NNC Limited 2003

All rights reserved. No part of this document, or any information or descriptive material within it may be disclosed, loaned, reproduced, copied, photocopied, translated or reduced to any electronic medium or machine readable form or used for any purpose without the written permission of the Company

Distribution: I. Bobin (Framatome), D. Buckthorpe, T. Lennox, B. Riley, File

3050aOct99

Controlling procedure - QP11, QP40

DSC Ref

Table of Contents

List o	of Tablesi	ii
List o	of Figuresi	v
Sum	mary	v
1	Introduction	1
2 2.1 2.2 2.3 2.4 2.5 2.6	Materials and coatings employed in the AGR Introduction Materials Coatings Coatings properties Applications of coatings in-reactor	1 1 1 3 5 6
3 3.1 3.2 3.3 3.4 3.5	Materials and Coatings employed in Dragon Dragon heat exchanger materials Coatings Friction and wear Fretting Static adhesion	6 6 6 8 8
4	Coatings applied to gas turbine components	9
5	Coatings recommended for HTR	9
6	References	9

List of Tables

Table 1a	Materials used in the AGR reactor, $T \ge 400^{\circ}C$
Table 1b	Materials used in the AGR reactor, $T \ge 400^{\circ}C$

- Table 1a Materials used in the AGR reactor, $T \ge 400^{\circ}C$
- Table 1a Materials used in the AGR reactor, $T \ge 400^{\circ}C$
- Table 1f Materials used in the AGR reactor, $T \ge 400^{\circ}C$
- Table 2AGR boiler tube materials
- Table 3 Alloys used in AGR, $T \ge 400^{\circ}C$
- Table 4
 Compositions of hard coatings used in UK AGRs
- Table 5LC-1B vs LC-1B, friction and wear data at reactor gas pressure
- Table 6 LC-1B vs LC-1B, fretting test data
- Table 7
 LC-1B vs another: friction and wear data at reactor gas pressure
- Table 8LW-5 vs LW-5 and LW-5 vs another: friction and wear data at reactor gas
pressure
- Table 9Friction and wear data for Alloy C and SF60; tests at reactor gas pressure
- Table 10Considerations in choice of coating
- Table 11 Coatings used in the UK AGR reactor System A
- Table 12 Coatings used in the UK AGR reactor System B
- Table 13Coatings used in the UK AGR reactor System C
- Table 14AGR coatings operating at temperatures above 300°C
- Table 15 Coatings applied to gas turbine components in the compressor section, T < 1000° F (538°C)
- Table 16 Coatings applied to gas turbine components in the combustion and turbine sections, $T > 1000^{\circ}F$ (538°C)

List of Figures

Erreur ! Aucune entrée de table d'illustration n'a été trouvée.

Summary

This report covers a review and identification of materials used in the UK Advanced Gas – Cooled Reactor (AGR) and the Dragon. The report contributes to deliverable D39 of the HTR-E Project. The results from this work will assist in establishing a first classification of materials and coatings before further tests are undertaken.

1 Introduction

This report covers a review and identification of materials used in the UK Advanced Gas – Cooled Reactor (AGR) and the Dragon. The report contributes to deliverable D39 of the HTR-E Project.

Coatings have been employed in the Dragon and AGR reactors to confer suitable tribological properties to, principally, austenitic stainless steel and mild steel. Many coatings were incorporated at the design stage and others were introduced to overcome specific problems.

The purpose of this document is to provide where possible available information on the materials and coatings used and the different environmental and tribological conditions (type of contact, contact conditions, loading conditions) experienced. The results from this work will assist in establishing a first classification of materials and coatings before further tests are undertaken.

This document contains the results of work at NNC on Deliverable D38 of the HTR-E Project.

2 Materials and coatings employed in the AGR

2.1 Introduction

A wide range of plain carbon, low alloy and austenitic stainless steels were employed in the AGR reactor. Austenitic stainless steels were specified almost exclusively for application at temperatures above 400°C although some nickel alloys were also used.

Four types of hard coating were applied to components to reduce friction, improve wearresistance, prevent adhesion and to protect against corrosion. Detonation-Gun and Plasma Spray coatings were used widely in AGRs, and almost exclusively in the gas circuit. Sprayfused coatings and weld deposits were used mainly in ancillary plant, e.g. in valves. Chromised and other diffusion coatings are also employed in AGR reactors.

2.2 Materials

A list of materials used in AGR, including the heat exchangers, for application at temperatures above 400°C is presented in Table 1 a-f. The list is comprised mainly of austenitic alloys, which suffer from poor tribological performance generally. A wider range of alloy types is employed for heat exchanger tubing, as shown in Table 2. Descriptions of the alloys used for high temperature application in AGR are supplied in Table 3.

2.3 Coatings

2.3.1 Introduction

Hard coatings were used to moderate friction levels and reduce wear in rubbing contact at a range of frequencies. The types of coating employed are described below. Coating compositions are given in Table 4.

2.3.2 Detonation-Gun coatings

Detonation-Gun, or D-Gun, coatings were supplied by Union Carbide (now Praxair). These coatings are applied using a device similar to a rifle barrel, into which powdered coating

material and an oxygen/acetylene gas mixture are introduced and then ignited by a spark discharge. The mixture detonates and the powder is propelled from the barrel at high velocity. The operating cycle is repeated many times to build up the coating.

Advantages of the technique are:

- High density deposits
- Good adhesion to the substrate
- Minimal surface preparation
- Low heat input to the substrate material.

Disadvantages are:

- Unsutable for some geometries, e.g. inside tubes
- One supplier

This technique was used to deposit **LC-1B** and **LW-5** cermet coatings for use in AGR. Both coatings contain particles of great hardness bound together by a small amount of a softer, metallic phase. LC-1B consists of 65% (by weight) Cr_3C_2 in a Ni-Cr binder. LW-5 consists of 25% WC and 5% Ni together with mixed tungsten and chromium carbides.

2.3.3 Plasma Spray coatings

In this technique, powder is carried to the component surface in a high temperature stream of inert gas.

Advantages:

- A wide range of coating types may be applied
- Deposition on tube bores is standard

Disadvantages:

• Porosity greater and adhesion to substrate poorer than for D-Gun coatings

The only coating applied using this technique was **LC-2** (from Union Carbide), which is similar in composition to LC-1B.

2.3.4 Spray-Fuse coatings

In this flame spraying technique, powder is deposited from an oxy-acetylene flame and further heating is supplied to fuse the deposit.

Advantages:

• Good adhesion to substrate

- Thick coatings (several mm) possible
- Good apparatus mobility

Disadvantages:

- High degree of substrate heating
- Post-deposition machining required
- Poor quality control

Coatings **SF50** and **SF60**, from Deloro Stellite, were applied by the spray-fuse method. Both coatings are nickel-based and also contain chromium, iron, silicon, boron and carbon.

2.3.5 Weld deposits

The technique normally used was that of transferred arc inert gas (TIG) welding. The advantages and disadvantages of this technique are similar to those of spray-fused coatings. Nickel-based Alloy C, Alloy 50 and Alloy 60, from Deloro Stellite, were used in AGRs. Alloy C is of high chromium and molybdenum content, with some iron and tungsten. Alloy 50 and Alloy 60 are similar in composition to SF50 and SF60.

2.4 Coatings properties (Ref. 6.1- 6.3)

2.4.1 Spalling

Spalling may result from a combination of factors, including internal stress resulting from the coating process, thermal stress due to temperature cycling and differential thermal expansion, oxidation, poor adhesion of the coating to the substrate and weakened adhesion as a result of coating/substrate interface corrosion. The nickel-based hard coatings were deemed to be better than the cermets with regard to these compatibility issues. Nevertheless, corrosion testing of LC-1B over many thousands of hours did not reveal a serious spalling problem.

2.4.2 Oxidation performance

LC-1B and LC-2

LC-1B and LC-2 coatings are of similar composition but LC-2 is applied by plasma spraying rather than by the D-Gun technique. LC-2 has a lower bond strength and greater porosity than LC-1B but its great advantage is that it can be applied to the bores of components, often an impossibility for D-Gun coatings. LC-1B and LC-2, in as-coated and as-ground conditions, were exposed under reactor conditions, at temperatures up to and beyond 700°C for tens of thousands of hours.

All coatings performed satisfactorily at 600°C. At 700°C, as-coated LC-1B performed satisfactorily but both as-ground LC-1B and as-coated LC-2 showed detachment of small areas at corners after 10 kh exposure. Detachment resulted from additional stress where the coating was applied right up to the edges and corners. For the component under test, these

were critical areas. In the absence of detachment, coating performance was excellent with the maximum oxide growth at 700°C of 3 μ m well within design values (75 μ m). Although the coatings were porous and internal oxidation of the coating occurred, there was no evidence of oxidation of the substrate. In other tests on LC-1B at 700°C, the coating showed no evidence of cracking or detachment from the substrate.

In conclusion, LC-1B and LC-2 coatings were deemed to be satisfactory for high temperature operation provided they have been correctly applied. Coating loss at edges may be expected but gross spalling does not occur.

Test data for LC-1B are presented in Table 5-7.

LW-5

Oxidation of the tungsten carbide constituent of LW-5 limits its use to temperatures below 400°C. LW-5 was tested on a mild steel substrate at 300°C and 400°C. At 300°C, the oxidation performance of the coating was excellent with a weight gain of only 0.1 mg cm⁻² measured. At 400°C, gross oxidation of the substrate occurred though the coating remained intact. In practice, use of LW-5 on mild steel is limited to temperatures of less than or equal to 350°C. On austenitic stainless steels the coating may be used at temperatures up to 400°C.

Test data for LW-5 are presented in Table 8.

SF50, SF60 and Alloy C

SF50 and SF60 were not used extensively in the gas circuit. Their use at high temperature in early designs of AGR was discontinued because of their poor oxidation performance. After long term exposure testing of Alloy C, this coating was also found to have limitations at high temperature. Though performing satisfactorily at 550°C, blistering gradually developed at 650°C.

Test data for these coatings are presented in Table 9.

Chromised and chromaluminised coatings

In tests at 400°C, the oxidation performance of chromised mild steel was satisfactory at times up to 86 kh but blistering then occurred. Chromised and chromaluminised EN 58B (18% Cr, 10% Ni) stainless steel was tested to 100 kh at 700°C and gave satisfactory oxidation performance though some spalling occurred.

2.4.3 Nuclear compatibility

The only element in any of the coatings which might cause a nuclear compatibility problem is boron. 20% of naturally occurring boron is in the form ¹⁰B which has a high thermal neutron capture cross section. Boron is present in Alloys 50 and 60 at levels of 1.8% and 3.5%, respectively. These coatings have therefore not been used to any great extent in the gas circuit.

2.4.4 Friction, static adhesion and wear

Where coated components are in continuous or intermittent contact with other components and there is relative movement between the parts, seizure or malfunction will be governed by the value of friction coefficient. However, no single value of friction coefficient can be attributed to a materials pair for this parameter will change with temperature, loading, sliding speed, frequency of vibrational relative motion, etc. Also, two aspects must be considered: dynamic friction and static adhesion.

A great amount of friction testing, at various temperatures and gas pressures, and under different loadings, was carried out in support of the AGR programme.

Mild and low carbon steels are susceptible to adhesion in carbon dioxide at temperatures of 300°C and above, while austenitic stainless steels will resist adhesion at temperatures up to approximately 550°C. Adhesion occurs largely as a result of the growing together of surface oxides but also by welding at metallic junctions. Hard coatings may be applied to overcome the risk of adhesion by protecting the underlying metal from oxidation.

Adhesion trials were carried out in CO_2 at temperatures up to 650°C on a range of engineering materials and coatings.

The tribological performance of three coatings in particular: Detonation-Gun coatings LC-1B and LW-5, and spray fused SF60 compare favourably with most other engineering materials. They are not susceptible to adhesion in CO_2 -based atmospheres and will protect mild steel and stainless steel against adhesion.

Specific wear rates show variability and should not be regarded as absolute values. For design purposes a large safety factor should be used. The specific wear rates for LC-1B and LW-5 decrease with duration of rubbing provided the coating is not damaged. Wear rates for these coatings are highest at intermediate temperatures of between 200°C and 450°C and lowest at temperatures between 500°C and 600°C. Wear rates in CO_2 are dependent on temperature, lower rates occurring in high pressure gas.

2.5 Applications of coatings in-reactor

Considerations in the choice of coatings for AGR application are set out in Table 10.

Whenever the design permitted, Detonation-Gun coatings were preferred for AGR application. LW-5 coatings were specified for temperatures below 300°C and LC-1B coatings for higher temperatures. For applications where Detonation-Gun coating was not feasible, plasma sprayed LC-2 was employed as an alternative to LC-1B. At the time of AGR construction, plasma spraying was generally accepted to result in an inferior coating to that deposited by Detonation-Gun.

Components to which coatings were applied in three designs of AGR are described in Tables 11-13. A further list of coatings applied to AGR components is presented in Table 14.

2.6 AGR heat exchangers and circulators

Sliding and, in particular, fretting wear was a widespread problem in the heat exchangers and circulators of early designs of AGR. Design changes and coatings were employed to overcome the problems. The coatings used in three designs of AGR were included in Tables 11-13.

3 Materials and Coatings employed in Dragon

3.1 Dragon heat exchanger materials (Ref 6.4)

Water side corrosion resulted in frequent tube failures in Dragon primary heat exchangers early in its operation. A programme of redesign and manufacture of replacement heat exchangers was carried out. As a result of the failure investigation some heat exchangers were redesigned using Incoloy 800 tubes. The tube bundles in Dragon were clamped to a supporting structure to minimise vibration. In the original heat exchangers with mild steel tubes the clamps were made from stainless steel and the satisfactory performance of this materials combination was confirmed by examination following their removal from the reactor. The change to Incoloy 800 tube material and changes to the bundle geometry necessitated a new clamp design. The material selected was En 16 (manganese-molybdenum steel).

Tests were carried out on the fretting behaviour of heat exchanger tubes and tube clamps at temperatures in the range 425-580°C (Ref 1). The original and replacement materials combinations were tested. Under conditions representative of the cooler section of the heat exchanger both combinations wore similarly, tubes and clamps wearing by similar amounts. In tests more representative of hotter sections (clamp at 600°C, tube at 200-300°C) material was removed from the clamp and deposited on the tube. Both combinations wore similarly.

3.2 Coatings (Ref 6.5-6.12)

During the Dragon Project, friction and wear tests were performed on a range of materials and coatings, under various conditions, to ascertain the effects of helium purity and pressure.

3.3 Friction and wear

A programme of reciprocating sliding tests was conducted. The tests were carried out in pure helium at 0.1 MPa or 5 MPa pressure, or impure (reactor) helium at 2 MPa, at temperatures from 20°C to 800°C. Contact pressures of 2.1 MPa and 6.5 MPa were employed. The partial pressures of the impurities in the reactor helium were as follows. H₂O: 5 Pa, H₂: 50 Pa and CO: 50 Pa.

Materials couples that were tested included the following:

• Chromium carbide (LC-1B), like-on-like

This couple wore severely at 20°C in both atmospheres. With increasing temperature the wear rate fell; at the higher temperatures it was very low. Friction coefficients were moderate, in the range 0.5 - 1.0.

• Deloro Alloy C v Type 316 stainless steel

The performance in all tests was poor. The lowest friction coefficient observed was 1.0. In most tests there was severe galling.

• Tungsten carbide (LW-5), like-on-like; Chromium carbide (LC-2), like-on-like

These combinations were tested in pure helium only, at 0.1 MPa gas pressure and 6.5 MPa contact pressure. Results from the two couples were broadly similar, with friction coefficients around 0.5 at 20°C and 800°C, and with severe wear at the lower temperature but very low wear at 800°C. Following the tests at 800°C, the LC-2 specimens adhered.

• Stellite 6, like-on-like

This couple galled in pure helium at high temperature.

- Nitrided En40B v Type 316 stainless steel
- Chromium carbide (LC-1B) v Type 316 stainless steel

This combination was entirely unsatisfactory at all temperatures in pure helium, galling badly.

Several important conclusions were drawn from the reciprocating sliding tests:

- i. No significant or systematic difference was observed between wear behaviour in pure helium and in reactor gas.
- ii. In pure helium, no systematic effect of gas pressure was observed.
- iii. Of the parameters varied during the tests, temperature had by far the greatest effect, though this was not necessarily the same on both coefficient of friction and wear for the different material combinations.
- iv. There was no systematic effect of contact pressure on friction but when wear was high a significant increase with contact pressure was apparent.
- v. No materials combination behaved well under all test conditions.
- vi. No combination behaved entirely satisfactorily at 20°C.

Results from a further programme of work on alloy couples endorsed the above conclusions. They also showed that the concentration of water, and more significantly, oxygen in the helium had a considerable influence on the coefficient of friction. This was attributed to the formation of lubricating oxide films.

In a HTR, some rubbing interfaces associated with reactor components and structures will move only during temperature cycles or when components are inserted or withdrawn from the reactor. To assess the effect of a dwell, a series of tests were performed in reactor-composition helium at temperatures between 450°C and 750°C on seven materials

combinations. Each combination was tested in low speed reciprocating relative motion for 100 cycles and the results were compared with those from tests comprising 5 cycles each day for 20 days. Tests were performed on the following combinations:

- i. Deloro Alloy C v AISI 316
- ii. AISI 316 v AISI 316; 650°C and 750°C
- iii. Nimonic 90 v AISI 316; 650°C and 750°C
- iv. Nimonic 90, like-on-like; 650°C and 750°C
- v. Chromium carbide LC-1B, like-on-like; 650°C and 750°C
- vi. AISI 316 v EYC9106 Graphite; 450-750°C
- vii. En40B, like-on-like; 450°C

No materials combination showed an unambiguous difference in friction coefficient between the dwell tests and the continuous tests. Chromium carbide LC-1B, like-on-like, and AISI 316 v EYC9106 also showed no effect of dwell on load. The remainder of the materials pairs, though, showed more severe wear in the dwell tests than in the continuous tests. Most of the wear took the form of transfer of material from one specimen to the other and was attributed to welding during the dwell periods. In rubbing applications where there are small clearances, transferred material could give rise to interference forces between the contacting surfaces and consequently an increase in frictional forces.

3.4 Fretting

Experimental work was carried out to assess the wear damage produced by impact sliding fretting of several combinations of materials. The tests were done at 350°C and 750°C, at frequencies of 75 Hz and 150 Hz in dry, pure helium (<0.1 Pa H₂O) and in reference wet gas (5 Pa H₂O.

The impact fretting behaviour of metal-metal combinations with respect to gas purity and temperature were similar in that the effective specific wear rates were within the range 10^{-13} - 10^{-12} m³kg⁻¹m⁻¹. At 750°C, the wear rates in 'pure' gas were marginally greater than in 'impure' gas. In 'impure' gas, wear rates at 350°C were marginally greater than at 750°C. Long duration (100 h) tests resulted in localised welding between components.

3.5 Static adhesion

The static adhesion of various potential HTR materials was assessed at temperatures in the range 400-800°C in the 'pure' and 'impure' helium atmospheres used for the fretting tests. Materials included stainless steels, mild and low alloy steels, Nimonic alloys, Incoloy 800, hard facing alloys and graphites, alumina and flame sprayed alloys. Dead weight loading was applied to produce an interfacial pressure of 0.3 MPa. Specimen pairs were parted in tension after cooling to ambient temperature in helium.

The results indicated little or no adhesion of materials at 400°C in either of the two atmospheres but between 650°C and 800°C all metallic pairs examined showed adhesion with the exception of Nimonic 90 v En 58J stainless steel. At 650°C adhesion was

comparable with that found in carbon dioxide. With increasing temperature, a much higher degree of adhesion was found. The most powerful static adhesion was found in self couples of En 58J stainless steel. After 1000 h exposure at 800°C a parting pressure of 7 MPa was required.

4 Coatings applied to gas turbine components (Ref. 6.13)

Hard coatings, mostly applied by Detonation-Gun and plasma spraying, are used on hundreds of parts in production aircraft gas turbines. Praxair is a leading company in the supply of coating services to the aerospace industry. They supply a comprehensive range of coating types for different temperature applications. An indication of the different types of coating which have been applied within various parts of the gas turbine is given in Tables 15 and 16.

5 Coatings recommended for HTR

Results from AGR and Dragon verify the recommendation of D37 for the use of Cr_3C_2/Ni -Cr cermets at temperatures of 600-700°C. UK experience has shown that this type of coating also finds effective utilisation at temperatures down to 350°C, below which WC/Co cermets are favoured.

6 References

- 6.1 Fogden, R.J. 'A review of the tribological characteristics of coatings used in AGRs', NPC(R) Res Int 2359, AGR/CMF/TWG P(78)28, 1978.
- 6.2 Skinner, J. 'Hard coatings: Recommended data for AGR design life assessment', AGR/CMF/TWG/P(79)43, 1979.
- 6.3 Garrett, J.C.P. 'A review of the oxidation performance of AGR coatings', AGR/CIF/TWG/P(85)174, 1985.
- 6.4 Barnes, D. and Woodley, H. 'Fretting experiments carried out on Dragon heat exchanger components', DP Report 653, 1969.
- 6.5 Bray, P.F. 'Friction and wear tests in helium environments', TPL/R.12,130, GEC Power Engineering Ltd, 1971.
- 6.6 Fogden, R.J. 'Friction and wear tests in helium environments', TNPG 890, 1973.
- 6.7 Marsh, D. 'Friction and wear in helium atmospheres: effect of dwell', RPC/CM/P(73)205, 1973.
- 6.8 Betteridge, W. 'A consideration of friction, adhesion and wear in the HTR', DPTN/495, 1973.
- 6.9 Campbell, C.S. 'Interim report on friction and wear in helium', RPC/CM/P(74)208, 1974.
- 6.10 Campbell, K.J. 'Fretting in helium based atmospheres: a progress report to April 1972', BNDC/R.560, RPC/CM/P(73)5, 1973.

- 6.11 Campbell, K.J. 'Fretting in helium based atmospheres', BNDC R.729, RPC/CM/P(76)20, 1974.
- 6.12 German, P. 'Static adhesion of materials in Mark III reactor environments', BNDC/R.423, RPC/CM/P(71)60, 1971.
- 6.13 Union Carbide Coatings Service, 1987.

Component	Part	Specification	Operating temp (°C)
	Heat shield	BS 1631	650
	Universal joint ring	BS 1631	650
	Universal joint pin	En 58J	650
	Lower housing	BS 1631	
	Bellows	316	
	Gimbal joint ring	316	
	Gimbal joint pin	En 58J	
	Piston seal housing flange	BS 1631	
	Gimbal flange	321	
	Scatter plug flange	321	
Gag unit	Tie rod spider	BS 1631	
	Coupling sleeve	347	
	Inner scatter plug	347	
	Scatter plug tube	321	
	Scatter plug sleeve	316	
	Centralising lug	BS 1631	
	Outer scatter plug	BS 1631	
	Scatter plug tube	321	
	Gag plug	316	
	Lower housing	BS 1631	
	Gag shaft guides	321	
	Guide retaining ring	316	650
	Lower housing	BS 1631	650
	Gag shaft	En 58B	650

Table 1aMaterials used in the AGR reactor, T ^a 400°C

NNC Limited C6940/TR/0004 Issue 01

Component	Part	Specification	Operating temp (°C)
Control rod joints	Mushroom pin	En 58	430
	Tube end	En 58	
	Gimbal cap	316	
	Gimbal pin	En 58	400
Guide tubes	Gimbal ring	BS 1631	
	Fuel guide tube	BS 1631	400-675
	Gimbal cap screws	WHB 24	400
	Tundish	BS 1631	675
	Channel	321	582
	Sideplate	321	589
Boiler unit casings	Angle	321	589
	Spacer	316	589
	Nuts & bolts	316	589
	Tailpipe lug	316	
	Tailpipe tie	321	
Super heater tailpipe	Nuts & bolts	316	589
tier	Packer	316	
	Washer	321	
	Tray	321	
Boiler thermocouple	Clamp	321	
Trays (internal)	Tray support	321	564
	Spacers	316	
	Nuts & bolts	316	

Table 1bMaterials used in the AGR reactor, T ^a 400°C

NNC Limited C6940/TR/0004 Issue 01

Component	Part	Specification	Operating temp (°C)
	Tray	321	
	Frame	321	
Boiler thermocouple	Clamp	321	589
Trays (external)	Spacer	316	
	Nuts & bolts	316	
	Taper washers	321	
	Ties	321	
	Platen saucer	321	
Superheater bank	Tailpipe lug	321	589
ties	Pipe strap	321	
	Connector plate	316	
	Nuts & bolts	316	
	Baffle	321	589
	Beam	321	589
Acoustic baffle	Spacer	316	589
	Nuts & bolts	316	589
	Access door	321	564
	Flights	321	
Baffle and casing	Plate	321	450 - 589
flights	Spacer	316	
	Nuts & bolts	316	
	Tie plate	321	
Element ladder ties	Angle bracket	321	450 - 589
	Packer	316]
	Nuts & bolts	316	

Table 1cMaterials used in the AGR reactor, T ^a 400°C

Table 1d Materials used in the AGR reactor, $T \ge 400^{\circ}C$

Component	Part	Specification	Operating temp (°C)	
	Links	316 and 321		
9 Cr platen/hanger	Stud	Nimonic 80A	564	
	Hanger bolts	316		
	Stud	316		
Superheater	Nut	321		
platen/hanger	Beam flange	321	589	
	Hanger block	316		
	Washer	316		
	Seal strip	316		
Gas seal -	Clamping strip	316		
reheater/main units	Spacer	316	589	
	Angle	321		
	Nuts & bolts	316		
	Baffle	321		
	Cover plate	321		
Acoustic baffle seal	Washer	316	589	
	Spacer	316		
	Nuts & bolts	316		
	Baffle	321		
Tailpipe cover plates	Cover plate	321	589	
	Spacer	316		
	Nuts & bolts	316		
Main beam cross Tie rod		321		
tie bolts	Block	321	564	
	Nuts	316		

Component	Part Specification		Operating temp (°C)
	Seal plate	321	
	Backplate	321	
	Clamp	321	
	Spacer	316	
Superheater	Penetrator	321	589
penetrations	Casing frame	321	
	Casing side	321	
	Angle support	321	
	Seal ring	321	
	Nuts & bolts	316	
	Stud bolt	Nimonic 80A	589
	Nuts	SA 194 Gr 8T	
Superheater bank	Washer	321	
tie studs	Pipe spacer strap	316	
	Connector ploate	316	
	Lateral tie	321	
	Casing flight	321	
Reheater casing	Casing plate	321	610
flights	Spacer	316	
	Nuts & bolts	316	

Table 1eMaterials used in the AGR reactor, T ^a 400°C

Component	Part	Specification	Operating temp (°C)
	Main beam		
Reheater	Platen support block		
platen/beam	Casing flange	316	610
	Washer		
	Nuts & studs		
	Plate		
Reheater	Angle	316	610
element/ladder ties	Packer		
	Nuts & bolts		
	Support tie		
Reheater	Tailpipe lug	316	610
tailpipe ties	Packer		
	Nuts & bolts		

Table 1fMaterials used in the AGR reactor, T ^a 400°C

Table 2AGR boiler tube materials

Component	Specification	Operating temp (°C)
Primary economiser	Mild steel 1 Cr	≤ 320 ≤ 345
Secondary economiser, evaporator, primary superheater	9 Cr	≤ 530
Secondary superheater, reheater	316	600

Table 3Alloys used in AGR, T ^a 400°C

Specification	Alloy type
BS 1631	Austenitic Cr-Ni
En 58B	321
En 58J	316
316	Austenitic Cr-Ni
321	Austenitic Cr-Ni
347	Austenitic Cr-Ni
SA 194 Gr 8T	Austenitic Cr-Ni
Nimonic 80A	Ni-Cr
-	9 Cr

Table 4 Compositions of hard coatings used in UK AGRs

Coating	Manufacturer	Coating type	Deposition technique	Composition (%)
LC-1B	Union Carbide	Cermet	D-Gun	80 vol Cr ₂ C ₃ , 20 vol NiCr
	(now Praxair)			
LC-2	Union Carbide	Cermet	Plasma Gun	75 vol Cr ₂ C ₃ , 25 vol NiCr
	(now Praxair)			
LW-5	Union Carbide	Cermet	D-Gun	25 WC, 70 mixed WC ₃ /Cr ₂ C ₃ , 5 Ni
	(now Praxair)			
Alloy C	Deloro Stellite	Metallic	TIG weld or cast	Ni base, 17 Cr, 17 Mo, 6 Fe, 5 W, 0.1 C
Alloy 50	Deloro Stellite	Metallic	TIG weld, cast or spray	Ni base, 10 Cr, 4 Fe, 4 Si, 1.8 B, 0.5 Cu, 0.4 C
			fused (SF50)	
Alloy 60	Deloro Stellite	Metallic	TIG weld, cast or spray	Ni base, 16 Cr, 4.5 Fe, 4.5 Si, 3.5 B, 0.5 C
			fused (SF60)	

Temp (°C)	Gas	Specific wear rate (10 ⁻⁹ mm ³ N ⁻¹ mm ⁻¹)		Friction coefficient		Comments
		А	В	Mean	Max	
200	AGR	2	2	0.3	0.35	Flat-on-flat, reciprocating sliding. A = plate, B = key. 12.7 mm stroke. Contact pressure 1.73 MPa.
550	AGR	0.5	0.2	0.2	0.25	
650	AGR	0.06	0.6	0.2	0.25	
650	AGR	10,700	2,500	0.35	0.7	Flat-on-flat, reciprocating sliding. A = plate, B = key. 12.7 mm stroke. Contact pressure 3.45 MPa.
40	Argon	-	250-380			Crossed-cylinders. No systematic effect of load.
40	CO ₂	-	4-9			Crossed-cylinders. Greater wear at higher load.

Table 5LC-1B vs LC-1B, friction and wear data at reactor gas pressure

Temp (°C)	Gas	Specific wear rate (10 ⁻⁹ mm ³ N ⁻¹ mm ⁻¹)		Comments
		А	В	
600	Air	0.2	0.2	Flat-on-flat, 40 Hz. Contact pressure 11 MPa.
230	CO ₂	0.005-0.03	0.003-0.02	Flat-on-flat, 50 Hz. Contact pressure 3.9 MPa. Wear rate reducing with distance moved.
300	CO ₂	0.06	0.05-0.15	
550	CO ₂	0.002-0.004	0.002-0.007	
600	CO ₂	0.004-0.006	0.002-0.005	
20	AGR	<7	<7	Flat-on-flat, 150 Hz. Contact pressure 1.1 MPa.
275	AGR	22	30	
650	AGR	<7	<7	
20	AGR	7-10	7-10	Flat-on-flat, 150 Hz. Contact pressure 1.1 MPa. Impact/slide mode.
275	AGR	100-400	100-220	
650	AGR	20-40	<7-15	

Table 6 LC-1B vs LC-1B, fretting test data

Mate	erials	Temp (°C)	Gas	Specific wear rate (10 ⁻⁹ mm ³ N ⁻¹ mm ⁻¹)		Friction of	coefficient	Comments
А	В			А	В	Mean	Max	
LC-1B	316	550	AGR	-	-	1.4	2.3	Flat-on-flat, reciprocating sliding. A = plate, B = key. Stroke 12.7 mm. Contact pressure 3.45 MPa.
LC-1B	316	550	AGR	-	-	0.35	0.9	As above but contact pressure of 69 MPa.
LC-1B	316	650	AGR	2,400	14,900			Contact pressure 3.45 MPa.
LC-1B	316	650	AGR	Weight gain	4,000- 10,000	0.75	0.8-0.9	Contact pressure 17 MPa.
LC-1B	Carr's 23S	20	CO ₂	2	2	0.6	0.6	Sphere-on-flat
LC-1B	Carr's 23S	300	CO ₂	Weight gain	1	0.25	0.6	
Carr's 23S	LC-1B	20	CO ₂	4.2	7.4	0.8-0.9	0.9-1.0	Flat-on-flat. Contact pressure 17 MPa.
Carr's 23S	LC-1B	205	CO ₂	3.7	57	0.8	1.1]
Carr's 23S	LC-1B	300	CO ₂	6.6	81	0.8	1.0	

Table 7 LC-1B vs another: friction and wear data at reactor gas pressure

Note Carr's 23S is a high carbon, high chromium cold work tool steel

Mate	erials	Temp (°C)	Gas	Specific (10 ⁻⁹ mm ³	wear rate ³ N ⁻¹ mm ⁻¹)	Friction c	oefficient	Comments
А	В			Α	В	Mean	Max	
LW-5	LW-5	20	CO ₂	3.5	4	0.65-0.85	0.9	Flat-on-flat, reciprocating sliding. Stroke 10 mm. Contact pressure 17 MPa.
LW-5	LW-5	200	CO ₂	1.3	1	0.7	0.9	
LW-5	LW-5	300	CO ₂	0.1	1.7	0.8	1.1	
LW-5	EN4 mild steel	20	CO ₂	1.6	72	0.9	1.0	
LW-5	EN4 mild steel	205	CO ₂	2.2	410	0.9	0.9	
LW-5	EN4 mild steel	300	CO ₂	0	81	0.9	1.1	
LW-5	Carr's 23S	20	CO ₂	0.25	3	0.7	0.85	
LW-5	Carr's 23S	205	CO ₂	0.3	6	0.7	0.9	
LW-5	Carr's 23S	300	CO ₂	0.8	6.5	1.1	1.4	
Carr's 23S	LW-5	20	CO ₂	2.5	0.13	0.55	0.65	Contact pressure 136 MPa.
Carr's 23S	LW-5	205	CO ₂	0.79	0.33	0.5	0.6	
Carr's 23S	LW-5	300	CO ₂	0.31	0.17	0.4	0.5	

Table 8 LW-5 vs LW-5 and LW-5 vs another: friction and wear data at reactor gas pressure

Mate	erials	Temp (°C)	Gas	Specific (10 ⁻⁹ mm ³	wear rate ³ N ⁻¹ mm ⁻¹)	Friction of	coefficient	Comments
А	В			А	В	Mean	Max	
Alloy C	Alloy C	200	AGR	123	149	0.3	0.4	Flat-on-flat, reciprocating sliding. A = plate, B = key. Stroke 12.7 mm. Contact pressure 1.73 MPa.
Alloy C	Alloy C	550	AGR	242	417	0.3	0.4	
Alloy C	Alloy C	650	AGR	Pick-up	283	0.3	0.5	
Alloy C	Alloy C	550	AGR	-	-	0.6	1.3	Contact pressure 3.45 MPa.
Alloy C	Alloy C	650	AGR	-	-	0.4	0.5	
SF60	SF60	200	AGR	0.1	0.2	0.5	0.9	Flat-on-flat, reciprocating sliding. A = plate, B = key. Stroke 12.7 mm. Contact pressure 1.73 MPa.
SF60	SF60	450	AGR	1.7	2.2	0.9	1.05	
SF60	SF60	550	AGR	4.3	7.7	0.4	0.8	
EN58B	SF60	200	AGR	64	37	1.15	1.3	
EN58B	SF60	450	AGR	0.8	7	0.35	0.8	
EN58B	SF60	550	AGR	1.0	11	0.95	1.4	
EN58B	SF60	650	AGR	8.4	62	0.75	0.9	

Table 9 Friction and wear data for Alloy C and SF60; tests at reactor gas pressure

Table 10 Considerations in choice of coating

Note: The magnitudes of friction coefficient and wear rate shown here are mean values for a range of conditions

Material pair	Friction coefficient	Design specific wear rate (m ² N ⁻	Resistance to static adhesion	Oxidation resistance	Comments
LC-1B vs LC-1B LC-2 vs LC-2	0.24 ± 0.07	5 x10 ⁻¹⁵	Good	Good	Low substrate heating during deposition. Surface finishing usually not required.
LW-5 vs LW-5	0.75 ± 0.09	5 x10 ⁻¹⁵	-	-	Low substrate heating during deposition. Surface finishing usually not required. Not used above 300°C.
SF60 vs SF60	0.48 ± 0.24	2 x10 ⁻¹⁵ – 2 x10 ⁻¹⁴	Poor	Poor	High substrate heating during deposition. Boron content (3.5%). Post-deposition finishing required.
Alloy C vs Alloy C	0.55	10-12	-	Fairly good	High substrate heating during deposition. Post-deposition finishing required. High wear rates and rough, galled surfaces.
SF60 vs EN58B (17/20 Cr, 7/10 Ni)	0.61 ± 0.25	5 x10 ⁻¹²	Poor	Poor	Best combination involving stainless steel.

Component	Coating	Coating	Counterface	Action	Temp (°C)
		thickness (µm)			
Control rod joint	LC-1B	50 min	LC-1B	Rocking	560
Interstitial guide tube	LW-5	50 min	BS 3100 347C17 (18/21 Cr,	Sliding	400
			9/12 Ni) casting		
Gag orifice	LC-1B	50 min	LC-1B	Sliding/fretting	650
Gag plug fins	LC-1B	50 min	LC-1B	Sliding/fretting	650
Gag shaft vibration snubber	Alloy C	50-100	Mild steel	Sliding/fretting	300
and rubbing button					
Gag drive shaft-Hooke joint-	Alloy C	50-100	Alloy C	Sliding	650
pin					
Gag drive shaft guide	LC-1B	50 min	EN 58B (17/20 Cr, 7/10 Ni)	Sliding/fretting	650
bearing					
Fuel assembly-sealed	Alloy C	150 min	BS 3100 347C17 (18/21 Cr,	Sliding	650
gimbal joint-pivot pins			9/12 Ni) casting		
Fuel assembly - gag	LC-1B	75-100	BS 3100 347C17 (18/21 Cr,	Sliding/fretting	650
coupling universal joint			9/12 Ni) casting		
Motor piston ring - gas	LW-5	50-75	LW-5	Sliding	280
circulator					
Inner seal ring-circulator	LW-5	50-75	Mild steel	Sliding	280
dome transfer ring					
Transfer ring bore-circulator	LW-5	75-100	LW-5	Sliding	280
dome					
Dome operating rods - gas	LW-5	175-225	Nitrided EN40B (3 Cr-Mo)	Sliding	280
circulator					

Table 11Coatings used in the UK AGR reactor – System A

Table 12Coatings used in the UK AGR reactor – System B

Component	Coating	Counterface	Temp (°C)
Top bush retaining ring – gas circulator	LW-5		280
Dome guide – gas circulator (or stop ring)	LW-5		280
Isolating dome - gas circulator	LW-5		280
Seal ring (piston ring) – gas circulator	LW-5		280
Inner sealing ring – gas circulator	LW-5		280
Bottom bush – gas circulator	LW-5		280
Dome operating rods – gas circulator	LW-5		280
Fuelling guide tube top bearing (hub and housing)	LC-2	LC-2	650
Control rod guide tube top bearing (hub and housing)	LC-2	LC-2	
Dome thermocouple penetration – thermal	LC-1B	EN58B (17/20	300-400
baffle:segmented ring		Cr, 7/10 Ni)	
Control rod joints	LC-1B	LC-1B	600 max
Flux scan penetration – gas sample pipe bearing seal	LW-5	EN58B (17/20	300
		Cr, 7/10 Ni)	
Core restraint	Stellite Alloy 50		350
Hot box labyrinth seal	LW-5		280

Component	Coating	Counterface	Action	Temp (°C)
Control rod shock absorber – piston in	Alloy C		Rubbing	350-750
swage tube				
Boiler hangers – anchors and guides	Alloy C		Rubbing/adhesion	280-650
Boiler interbank seals	Alloy C welded	Alloy C cast	Sliding	500 & 600
Boiler thermocouple duct liners	'High Cr' Alloy C	'High Cr' Alloy C	Adhesion	290-640
	welded	cast		
Boiler spectacle plates on upper tail pipes	Alloy C cast		Bearing location	640
Control plug unit – brake friction pad	LW-5		Rubbing	75
Fuel stringer – IC tube insert	Stellite SF-60		Rubbing	725

Table 13Coatings used in the UK AGR reactor – System C

Coating	Base material	Max temp (°C)	Component
	En 58E or F	560	Control rod joint
	BS 1631B	650	Gag orifice, guide bearing, universal joint
	316	650	Gag plug fins
LC-1B	-	400	Thermal baffle
	-	600	Control rod joints
	BS 1631B	650	Gag orifice
	321	650	Gag drive shaft
	316	650	Fuel assembly
	304	650	Plug unit assembly, gimbal pin and bush
	BS 1631B	400	I/S guide tube
	321	300	Seal in flux scan penetration
LW-5	Mild steel, 316	300	Gag and circulator items, gas bypass bellows
	321	320	SSD tail pipe
	304	400	I/S guide tube adaptor sleeve
LC-2	-	650	Fuelling and controlling rod guide tube
SF50	-	650	Gag drive shaft
Alloy 50	-	370	Core restraint
SF60	18/8	725	Fuel stringer – I.C. tube insert
	304	300	SSD
	Mild steel	300	Gag shaft
	316	650	Gimbal joint
Alloy C	321	750	Control rod
	-	650	Boiler hangers
	-	600	Boiler seals
	-	640	Upper tail pipes
PW-60	304	350	SSD pipework support
Chromised	Mild steel	438	
	316	630	S/H tail tube grid support

Table 14 AGR coatings operating at temperatures above 300°C

NNC Limited C6940/TR/0004 Issue 01

Table 15	Coatings applied to gas tu	Irbine components in the comp	pressor section, T < 1000°F (538°C)
----------	----------------------------	-------------------------------	-------------------------------------

Components	Coated area	Tribological problem	Coating type	
Fan and compressor blades	Shroud pads	Fretting	Tungsten carbide/cobalt	
Fan and compressor blades	Root section pressure faces	Galling	Copper-nickel-indium	
Variable vane trunions, drive	Bearing surfaces	Fretting	Tungsten carbide/cobalt	
arms, bearings, etc				
Compressor hubs	Bearing journal diameters	Fretting	Tungsten carbide/cobalt	
Compressor blades	Airfoils	Particle erosion	Tungsten-titanium carbide/nickel,	
			tungsten carbide/cobalt, titanium	
			nitride	
Compressor hubs and discs	Snap diameters	Fretting	Tungsten carbide/cobalt	
Expansion joints	Sealing surfaces	Sliding and fretting	Tungsten carbide/cobalt	
Diffusers and impellors	Vane surfaces	Particle erosion	Tungsten-titanium carbide/nickel,	
			tungsten carbide/cobalt, titanium	
			nitride	
Bearings	Sealing surfaces	Sliding	Chromium carbide/nickel-	
			chromium, tungsten carbide/cobalt,	
Bearings	Sealing surfaces	Fretting	Tungsten carbide/cobalt	
Gears	Bearing surfaces and	Fretting	Tungsten carbide/cobalt	
	journals			
Labyrinth seal fins	Knife edge tips and face	Rubbing	Tungsten carbide/cobalt, chromium	
		_	carbide/nickel-chromium,	
			aluminium oxide	

Table 16	Coatings applied to gas turbine components in the combustion and turbine sections, 1	- >	1000°F (538°C)
----------	--	-----	----------------

Components	Coated area	Tribological problem	Coating type
Combustion chamber positioning pins and bushes	Bearing surfaces	Fretting	Tungsten carbide/cobalt, chromium carbide/nickel-chromium
Fuel nozzle and swirler	Bearing surfaces	Fretting	Chromium carbide/nickel-chromium
Fuel nozzle and swirler	Threads	Loosening	Copper-nickel-indium
Combustion chamber	Interior surfaces	Thermal barrier required	Duplex McrAIY/partially stabilised zirconia
Turbine blades	Unshrouded tip	Rubbing	Cobalt alloy cermet (with alumina dispersion)
Outer airseals	Sealing surfaces	Rubbing	Cobalt alloy
Outer airseals	Sealing surfaces	Thermal barrier required with erosion resistance	Duplex McrAIY/partially stabilised zirconia
Turbine stator shrouds	Shroud flanges	Fretting	Chromium carbide/nickel- chromium, cobalt alloy cermet (with alumina dispersion)
Turbine vanes	Inner-foot pads	Fretting	Chromium carbide/nickel- chromium, cobalt alloy cermet (with alumina dispersion)
Exhaust fairing pins and bushes	Bearing surfaces	Fretting	Tungsten carbide/cobalt

Figure 1 Fretting test data from materials in like-on-like configuration. Tests in air at low pressure.

Figure 2 Recommended Design Wear Rates

Note: A safety factor is incorporated into these values

NNC Limited C6940/TR/0004 Issue 01