

HTR-N & N1 High-Temperature Reactor Physics and Fuel Cycle Studies (EC-funded Projects: FIKI-CT-2000-00020 & FIKI-CT-2001-00169)

Work Package: 2		HTR-N project document No.: HTR-N-01/05	Q.A. level: 1/2			
Task:	2.1.1	Document type: Deliverat	ole			Document status: final
Issued by: IK	E	original document No.:	Annex pg. ()	Rev. O	Q.A. level B	Discemination level.

Docum	nent Title								
Specification of fuel cells composition and power histories relevant to applications in WP1 and WP3									
Author	r(s)		W. Berr	inat					
Organi	sation, Country								
		IKE, Univer	sity of St	uttgart, Gerr	many				
Notes	Elec	tronic filing:			Electronic	file format:			
	SIN	ſER			Mie	crosoft Word 97			
	SINT	ER			Mid	crosoft Word 97			
1	SINT 20.10.2004	FER				crosoft Word 97			
1	SINT 20.10.2004 15.03.2003	FER final issue first issue	IKE		Mid Mb IKE W. Bernnat	FZJ W. von Lensa			

Work Package: 2		2	HTR-N project docum ent No.: H TR -N -01.05-D -2.1.1	Rev. < no.
Task:	2.1.1		Docum ent type: Deliverable	

Chronology and history of revisions

Rev.	Date	Description
0	15.03.2003	First issue
1	20.10.2004	Final issue

W ork Package: 2		2	HTR-N project docum ent No.: H TR -N -01.05-D -2.1.1	R <i>e</i> v. < NO.
Task:	2.1.1		Docum ent type: Deliverable	

DISTRIBUTION

EXTERNAL (SINTER database)

HTR-N Partners HTR-N Coordinator

(3 printed copies)

INTERNAL, IKE

G. Lohnert M. Bürger W. Scheuermann

W ork Package: 2		HTR-N project docum ent No.:	R <i>e</i> v.	
		HTR-N-01.05-D-2.1.1	< no.	
Tadr. 211		Docum ent type:		
1037. 2.1.1		Deliverable		

Specification of fuel cells composition and power histories relevant to applications in WP1 and WP3 Deliverable

W. Bernnat

Stuttgart, 20 Oktober 2004

Under the contract of the European Union (5th Framework Program) no. FIKI-CT-2000-00020.

rev. no	date	description
В	20.10.2004	Final issue
А	15.03.2003	First issue

author : W. Bernnat	reviewed : M. Mattes
1	Approved:
HTR-N-01/05-D-2.1.1	

W ork Package:	2	HTR-N project docum ent No.: HTR-N-01.05-D-2.1.1	Rev. < no.
Task: 2.1.	1	Docum ent type: Deliverable	

1. Introduction

This document contains the specification of fuel cell compositions and power histories relevant to cell burnup benchmark calculations. The specification is made according to the Pu cell benchmark performed in HTR-N1. As fuel low enriched (8 % U-235) UO2 was used, however. The specification of the fuel kernels were according to the kernels for the HTR MODUL and PBMR (see Fig. 1). As for the case of the Pu-cell benchmark the realistic environment of the analysed cell (fuel elements with average burn-up) was not taken into account with the consequence of strongly varying multiplication factors. The target burn-up was chosen to 100 MWd/kg U. The U content of the fuel cells varied from 6 to 10 g U/ fuel element.

Fig. 1. Fuel element composition

W ork Package:	: 2 HTR-N project docum ent No.: HTR-N-01.05-D-2.1.1		Rev. < no.
Task: 2.1.1		Docum ent type: D eliverable	

2. Fuel cell definition

For simplicity the benchmark concerns only a spherical ("pebble") fuel element containing coated fuel particles. The neutronic boundary condition is assumed to be "white", i.e. isotropic reflection from the outer boundary of the pebble. Although this is not entirely representative for a full scale pebble bed HTR it is expected to serve the purpose as a basis for intercomparison of codes and data for the reactor physics analysis of an HTR fuel at moderate burnup. More specifically k_{∞} will drop below 1 at high values of the irradiation. This is not considered to be a problem, as in a real pebble bed HTR such a pebble at high burnup will be surrounded by "driver" fuel at lower burnup so that the criticality of the reactor can be maintained. The fuel element parameters and isotopic compositions correspond to those of the UO₂ coated particles defined in the "Definition of reference coated particles of the German MODUL reactor [1].

2.1 Fuel element parameters

The main parameters of the fuel elements employed in this benchmark are the following:

Diameter of fuel element (FE) Diameter of central fuel zone of FE Graphite density Amount of U 6.0 cm 5.0 cm 1.75 g/cm³ 6.0 g U per FE (*8% U-235*) 7.0 g U per FE (*8% U-235*) 8.0 g U per FE (*8% U-235*) 9.0 g U per FE (*8% U-235*) 10.0 g U per FE (*8% U-235*)

2.2 Coated particle parameters

The coated fuel particles consist of a fuel kernel containing the UO_2 fuel surrounded by coatings. These coated particles are embedded in a graphite matrix (density: 1.75 g/cm³) in the central fuel zone of the FE. The main parameters of the coated fuel particles are the following:

UO ₂ -density in the kernel	10.4 g/cm ³
Kernel diameter	0.25 mm
Coating layer materials (inner to outer)	C / C / SiC / C
Coating thickness (inner to outer)	95 / 40 / 35 / 40 µm
Coating density (inner to outer)	1.05 / 1.90 / 3.18 /1.90 g/cm ³

2.3 General parameters

Power per FE (constant during burnup) 1.0 kW

Task: 2.1.1 Docum ent type: Deliverable	W ork Pack	kage:	2	HTR-N project docum ent No.: HTR-N-01.05-D-2.1.1	Rev. < NO.
	Task:	2.1.1		Docum ent type: D eliverable	

Average temperature of 5 cm central fuel
zone (i.e. kernel, coatings and matrix)800 degr. CAverage temperature of 0.5 cm graphite
outer zone750 degr. CFinal burnup100 MWd/kgHMIrradiation time100 * x full power days (x g U per FE)

2.4 Items to be calculated

The burnup history of the fuel at the defined constant power should be calculated for the selected Pu composition, <u>not</u> using any neutron poison, or any other means, for reactivity control. For a burnup of **0**, **20**, **40**, **60**, **80** and **100 MWd/kgHM** the following items should be reported:

- Neutron multiplication of FE (k_{∞}) [-]
- Isotopic (heavy metal and fission products) composition of the fuel kernel (see next table for list of nuclides) [10²⁴/cm³]
- Neutron flux (collapsed to 1 group) [s⁻¹cm⁻²]
- 1-group microscopic absorption cross sections for each of the considered isotopes [barn]
- 1-group microscopic fission cross sections for each of the considered isotopes [barn]
- Total fission rate **[s**⁻¹]

The nuclides to be considered in the isotopic compositions (and the 1-group microscopic cross sections) are the listed below. It is understood that some of the nuclides mentioned may not explicitly calculated by some of the code systems.

Heavy metal U-235, U-236 U-238	Fission pro	ducts
Pu-238 Am -241	Se-79	Sn-126
Pu-239 Am -242m	Rb-87	I-129
Pu-240 Am -243	Sr-90	Cs-135
Pu-241 Cm -242	Zr-93	Cs-137
Pu-242 Cm -243	M o-93 Sm -14	7
Pu-243 Cm -244	Nb-94	Sm -151
Pu-244 Cm -245	Тс-99	Eu-154
	Pd-107	

References

[1] Reutler, H.; Lohnert, G.: Der modulare HTR – Ein neues Konzept für den

Kugelhaufenreaktor. Atomwirtschaft 27 (1982).